Automatic speech signal segmentation based on the innovation adaptive filter
نویسندگان
چکیده
منابع مشابه
Automatic speech signal segmentation based on the innovation adaptive filter
Speech segmentation is an essential stage in designing automatic speech recognition systems and one can find several algorithms proposed in the literature. It is a difficult problem, as speech is immensely variable. The aim of the authors’ studies was to design an algorithm that could be employed at the stage of automatic speech recognition. This would make it possible to avoid some problems re...
متن کاملAn Improved Automatic EEG Signal Segmentation Method based on Generalized Likelihood Ratio
It is often needed to label electroencephalogram (EEG) signals by segments of similar characteristics that are particularly meaningful to clinicians and for assessment by neurophysiologists. Within each segment, the signals are considered statistically stationary, usually with similar characteristics such as amplitude and/or frequency. In order to detect the segments boundaries of a signal, we ...
متن کاملAutomatic Segmentation of the Clean Speech Signal
Speech Segmentation is the measure of the change point detection for partitioning an input speech signal into regions each of which accords to only one speaker. In this paper, we apply two features based on multi-scale product (MP) of the clean speech, namely the spectral centroid of MP, and the zero crossings rate of MP. We focus on multi-scale product analysis as an important tool for segment...
متن کاملAutomatic Speech Segmentation Based on HMM
This contribution deals with the problem of automatic phoneme segmentation using HMMs. Automatization of speech segmentation task is important for applications, where large amount of data is needed to process, so manual segmentation is out of the question. In this paper we focus on automatic segmentation of recordings, which will be used for triphone synthesis unit database creation. For speech...
متن کاملRule Based Speech Signal Segmentation
This paper presents the automated speech signal segmentation problem. Segmentation algorithms based on energetic threshold showed good results only in noise-free environments. With higher noise level automatic threshold calculation becomes complicated task. Rule based postprocessing of segments can give more stable results. Off-line, on-line and extrema types of rules are reviewed. An extrema-t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Applied Mathematics and Computer Science
سال: 2014
ISSN: 2083-8492
DOI: 10.2478/amcs-2014-0019